Chapter 6

Perturbation Theory

Say you have some system H of an n particle system and want to calculate its eigenspectrum
(i.e. its eigenvalues and eigenstates) or the dynamics it induces. In certain cases this is easy -
e.g., if the n particles are non-interacting or if we can apply physics intuition to transform into
some other clever basis where diagonalizing the Hamiltonian is easy. But generally this is hard
and we need to resort to approximation techniques.

Perturbation theory is an approach to handling complex Hamiltonians by breaking up the Hamil-
tonian into ’easier’ terms that you know how to diagonalize and small corrections that we can
treat as inducing perturbative corrections. Exactly, how to do this in practise depends on
whether there is or isn’t a time dependence, whether there is or isn’t degeneracy in the eigen-
states, as well as the available computational power. Let’s start with the simple non-degenerative
time-independent case.

6.1 Non-degenerate Time-Independent Perturbation Theory

Let’s consider a physical problem governed by a Hamiltonian H, which we decompose as

H=Hy+\V (6.1)

DIAGONALIZE

& L
HAMILTONIAN

Figure 6.1: Caption
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where Hy is a Hamiltonian with known eigenenergies and eigenstates (i.e. its the easy part) and
A € R" is a real positive parameter determining the strength of the additional term V which is
treated as a perturbation of the system. We are interested in studying the limit of this problem
where X is small (i.e., the limit of small perturbations).

Let |¢,,) denote the known eigenstates of Hy and ¢, the associated eigenenergies. The goal of
this section is to establish techniques to determine the eigenenergies of the total Hamiltonian
H. For sufficiently small perturbations ), it is reasonable to assume that the eigenstates |1, ) of
H will be "close" to |én), and the associated energies E,, will be close to €,. In the limit of very
small A, the solution can be expanded in powers of A:

[n) = [6n) + AJD) + X2 o)) + - (6.2)
En=en+AEW + N2EP) 4 ... (6.3)

And Schrédinger equation is written as:
(Ho+ AV) (16n) + Al )+ 32 [P + )

= (en+ ABD + N ED ) (1) + A1) + N2 [g2) + ) .
(6.4)

Our goal is to find explicit expressions for the perturbations to the eigenstates |z/1,(lk)) and cor-

rections to the eigenenergies Eflk) for k=1,2,....

The equation must be satisfied at each order in A. This allows us to iteratively identify the
corrections S and |¢7(7iC )).

Zero-th Order. At order 0 we simply have the unperturbed eigenvalue problem:

I:IO |pn) = €n|dn) -

1st Order. At order 1 we have:
ﬁ0‘¢£1)>+‘7|¢n): En‘wr(Ll)>+Er(L1) |¢n>7 . (6'5)

To isolate the first order correction to the eigenenergy, Eil), we can bra through with (¢,|:

<¢n|ﬁ0|¢g)> + <¢n|vl¢n> = En(d)nw)w(ll)) + ET(LI) <¢n|¢n> (6'6)
=1
6n(¢n|¢7(11)> + <¢n|‘7|¢n) = 6n(¢n|¢7(11)> + Ev(zl) (67)

where in the second line we have used Ho|¢o) = €o|¢o). We therefore find that the first order
correction to the energy of Hy due to V' is given by:

EY = (¢u|Vén) (6.8)
and so the eigenenergies of H to 1st order are:

Ep = e+ Mon|V[on) + O(X?) (6.9)
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What about the first order correction to the eigenstate? Our goal will be to write the correction
in the basis of the original eigenstates:

<) = Z<¢m|w,9>>|¢m> . (6.10)

Thus we need to compute the overlaps (¢mlw(1)) To do this we start with Eq. (6.5 but instead
bra through with (¢;,|. This gives

(Sl Holg$D) + (31alVI6n) = €n(dmlio”) + BV (Sraldn) (6.11)
=0
6m<¢m|¢g)> + <¢m|‘7|¢n> = fn<¢m|¢7(zl)) (6.12)
which can be rearranged to give:
(Omlton ) = === (6.13)

This looks promising but what is going on for m =n? To understand this remember that {|¢,,)}
are the eigenbasis of H and so form a normalised eigenbasis with

(Vnlthnr) = 6nns (6.14)
For m = n this constraint can be rewritten to first order in \ as
1= (Ynlthn) = (¢nlén) + A((nloD) + (151 [dn)) + O(X?). (6.15)
As )\ is positive we therefore have that:
(Dnl§) + (5D dn) = 2Re((0{P ) = 0. (6.16)

We are free to choose the global (unphysical) phase of the original eigenstates |¢,) such that
(v (1)|gz5n) is purely real. Thus we end up with

(@altrs”) = (¥ V]n) = 0. (6.17)
Putting this all together we have that

m V n
D) - 3, Ll (6.18)
m*n n
and so the eigenstates of H to 1st order are:
m V n
b = 1o + AV} + 002) = o)+ 30 L2200y o0y o)
m#*n n -
2nd Order. At order 2 we have:
Ho o)+ V[ 0) = en o) + B [0Y) + B |n) - (6.20)
To get the second order energy correction we can again bra through with (¢,,| which gives:
€n<¢n|¢7(12)> + (?bnlv |¢(1)> = €n<¢n|¢r(12)> + E7(11)<¢n|1/}1(11)> + E?'(l2) . (6'21)

On cancelling terms, recalling that ((;SHWJ(I)) 0 and substituting in Eq. (6.18)), this gives:
. l V16 Dl )P
B = 0ol - 3 Lol ing, ) - 57 HonlTICuIE

m#n ©n ~ m#n  tn ~€m

(6.22)

For the second order correction to the eigenstate things start to become messy but you can keep
on iterating this procedure to obtain an explicit expression for the eigenstates to second order.
You'll be pleased to know I won’t make you do this in this course.
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Comment 1. The above calculation implicitly assumed that the energy levels are non-degenerate.
If you have degenerate eigenvalues (i.e. two different eigenstates with the same energy) then the
denominator in Eq. (6.18) blows up. We will come back to how to deal with this case later in
this section.

Comment 2. For this approximation to be valid we need the second order correction to be
small compared to the first order correction. How can we check this? To derive one way
of checking let A be the energy difference between ¢, and the nearest energy level i.e. A =
min,, |€, — €,|. Then we can write:

[(6m|V6n)|
‘EQ)‘ |n§n (en —€m) |
(Sl Vi)
_ngn len — €m
<% 3 [fonlVlon]
<5 2 [(onlVign
- 3 (T @n710m 0l7i00) - on1V10,F
1
= < ((80172160) = (90l Ién))

The condition \E,(Lz)] < \E,(ll)| is satisfied as long as,

1 A A A
< ((@ul72160) = (6alV16)") << (@nlV 1) (6.23)
or equivalently, as long as:
(¢n|f/2|¢n> 9
————— —{(n|V]on) | < A. 6.24
(ol Ty 11O 020

A more restrictive but also easier-to-verify condition would be to require that the elements of
the perturbation matrix are small compared to the energy level spacing. In other words, we
impose:

(SnlV16n) | |

€n — €m

6.1.1 Examples

Ezample 6.1.1. Harmonic Oscillator Exposed to a Constant Force. Suppose we consider
particle in a Harmonic well subject to a constant force:

2
1
Hz—p + —mw?z?

-qF 2
5t z"-qEx. (6.25)

We can write this Hamiltonian as H = Hy + AV with

2
p 1 2.2
Ho=2 4+ =
075, "M (6.26)
V =—qFEx
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and A = 1. We know the energies of Hy, as this is just the simple harmonic oscillator with
energies

€n = hw (n + %) (6.27)

and eigenstates |n). To simplify things, we express V' using the lowering and raising operators

h
V = —qFEx =-qE\/ (a+al) (6.28)
2mw

with aln) = /njn—1) and af|n) = v/n + 1jn+1). To find the Ist order corrections to the energies,

we use E(V = (n|V|n):
EWM = —qFh [ i<n|(a +a')n) =0 (6.29)
2mw

and thus the first order correction to the energy vanishes E

To find the 2nd order corrections to the energies, we write

Vin)P?
@) _ L 6.30
n T’;n p— (6.30)
2mw o, hw(n—m) '
2 2 t 2
_PE s [fml(a s o) 622
2mw? m¥n (n - m)
To simplify this we use the fact that aln) = /n|n - 1) and a'jn) = v/n + 1|n + 1) to find
2O _ *E?h 5 lv/n(mln — 1) + Vn + L{m|n + 1)[? (6.33)
" 2mw 2, hw(n -m)
2 2 2 v
_4a E V7l + [Vn+1] (6.34)
2mw? \n-(n-1) n-(n+1)
2 172
Tk
=— 6.35
2mw? (6:35)
So, up to second order, we have
1 2E?
En:hw(n+—)— = (6.36)
2] 2mw?

Note that for this simple example you can just solve this Hamiltonian exactly by seeing that a
constant force simply shifts the equilibrium position (the position where the force vanishes) to
zo = ¢E/(mw?) as

2 2 2 2
1 1 E E
H:p—+—mw2x2—qu:p—+—mw2(a:—q—) _(q_)
2m 2 2m 2 mw? mw?

! (6.37)

p 1 9 2 1 5 9
=—+-—mw (x—-x9)" - —mw .
om "M (@mm)T g 0
2 2
Thus you can see that the perturbation reduces the energy by %mw%g = quig. We therefore

see that in this case 2nd order perturbation theory gives us the exact values of energies for the
Hamiltonian. However, this is is only true for this simple example and not generally the case.

!An alternative way of seeing this would be to note that |n) are even under reflections 2 - —z but z is of
course odd and the above equation corresponds to integrating an odd function for z = —co to = = co.
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Ezample 6.1.2. Potential of a Diatomic Molecule. Consider the following Hamiltonian
H = Hy+V with:
A _ ]32 ~2
}AIO -9 + %7
V =i + g3t

for ¢ > 0 and ¢ < 0. Note that to make our life less miserable here we have picked units such
that Aiw =m =1 (in contrast to the previous example).

257

201

1571

Figure 6.2: Correction to the potential

The energy and eigenstates of Hy for the system are already known- this is just a standard
quantum harmonic osccilator. Concretely, we have €, = (n + %) The goal is to determine the

ET(Lk) for a fixed n. From Eq. the first order correction to the eigenenergies is given by:
EW = (n)ci® + q@t|n) .

To evaluate this let’s introduce creation and annihilation operators such that # = a +af. It is
immediately noticed that the term ¢i® does not contribute because only terms with the same
number of ' and a operators give rise to non-zero coefficients (alternatively, note that the
eigenstates |n) are symmetric under  — —2). Next we note that:
4 2
it =(a+a') = ((a)*+aa' +ata+a?)

= (a)* + (a)%a™ + (a)%a’ + (a)%a'a

+a'?(a)% +aa%aa’ + aa +aa’(a)?

+aa'® +aataal + aatala + af(a)?

+ataa™ +ataaal +alaa’a

= (a)*a'?+a'%(a)* +aa'a’a + ataaa’ + aataat + ataata,
where the last equality is obtained by again noting that only terms with equal numbers of

creation and annihilation operators lead to non-zero contributions. Thus (after a bunch of
algebra which I will leave it up to you to fill in) we find:

(n] (at +a)" |n) = (n] (a)? a2n) + (nfal® (@)% |n) + (nlaaiaTaln) + (njafaaal|n) + (njaataa’|n) + (nfataataln) =
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And so we have

1 1
enw(n+§)—6|q| (n2+n—5) : (6.38)

6.2 Degenerate Time-Independent Perturbation Theory

As mentioned earlier, the approach described above fails when Hy has degenerate eigenvalues
because of terms of the form En_lgm = % in Eq. (6.18). In this section we show how we can deal
with this case.

For simplicity, we assume for now that only for the n;, energy state is there an N-fold degeneracy.
That is, we suppose that the initial Hamiltonian Hy has energy ¢, with N degenerate states
On;,t=1,...,N.

Let us start by finding the first order corrections E}(Ll). To do so, we expand our eigenstate [, )
in powers of A. However, this time we replace the 0-th order term |¢,) with a linear combination
2j ¢jlén,) of the degenerate states because we are unsure of what combination of these states
yields the “correct” 0-th order contribution to [¢,). That is, we can write:

[Wn) = 3 cildn; ) + MDY + APy + ... (6.39)
J

and the energy is given by
En=en+ AEW + NX2EP) 4 (6.40)

as previously. Again, working from the Schrodinger equation H|w,) = Eplw,) to first order in A
we have:

HoloM) + Y2 ¢;VIgn,) = enltstD) + BV Y ¢jlén, )
J J
Similarly to the non-degenerate case we next bra through with (¢y,|,

(Sni Holo M) + 3 (60, VIdn,) = enfn o) + B Y ¢5(bn.lén,)
J J

and cancel the €, terms to give:

Z<¢”i|v|¢nj>cj = Er(Ll) ch<¢ni|¢nj> = E7(L1) ZCj5ij = Er(Ll)Ci
J J

J

The terms (@, [V|én,) = Vij are the matrix elements of V' in the {|¢y,)} basis of degenerate 0-th

order states. Thus we have:
> Vigej = B¢
J

This is precisely an eigenvalue equation. The first order corrections Eqsl) are the eigenvalues
of V in the degenerate state basis and the corresponding vectors ¢; characterize the “correct”
linear combination }; cj|¢y,) in the 0-th order term of the eigenstate [t),).

Finding eigenvalues and eigenvectors of a matrix are equivalent to diagonalizing it - so, when
we carry about this procedure for finding the 1st order corrections to the energies of degenerate
states, we just diagonalize the perturbation Hamiltonian V.

Comment 1. Note that in the context of perturbation theory for a non-degenerate physical

system, the perturbation appears at order 1 in )\, while here we have a correction to the zero-th
order state.
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Comment 2. In general, a perturbation allows us to lift degeneracy, i.e., obtain energy cor-
rections Efllz) that are all different. Any remaining degeneracies are actually due to intrinsic
symmetries, directly related to the physics of the problem. This links back to the previous
comment - it is because the degeneracy is lifted that the Oth order contribution changes.

6.2.1 Examples

Ezample 6.2.1. Trivial example. We first note that this approach trivially works for the case
of a Hamiltonian H = Hy+V with Hy = al. In this case eigenstates of Hy are trivially degenerate
and the eigenvalues and eigenvectors of the perturbed Hamiltonian can be found by finding the
eigenvalues and eigenvectors of the perturbation V.

Ezxample 6.2.2. The Stark Effect. The Stark effect is an important phenomenon in atomic
physics where one observes the splitting of the degeneracy of one-electron atoms in an electric
field. In this example we consider the Hamiltonian of a one-electron atom (e.g. Hydrogen) in a
constant, uniform electric field £ which points only in the z direction. We neglect spin in this
example. (If you can’t remember the physics of the hydrogen atom now is a good moment to
recap it!) The Hamiltonian of such a system is
O
2m  2m  2m  4dmwegr

—eEz=Hy+V

where V is identified with the term —e£z. The ny, energy eigenvalue of the unperturbed Hamil-
tonian is n’-fold degenerate. In this example, we will consider the case of n = 2, which has
a 4-fold degeneracy; the corresponding degenerate eigenstates are given in |nlm) notation by
|200), |211), |210), |21 - 1).

To find the 0th order correction to the eigenstate and 1st order contribution to the eigenenergy
we need to diagonalize V' in the eigen-space spanned by |200), [211), [210), |21 -1). Le., we need
to find the eigenvalues and eigenvectors of:

(200[V|200)  (200|V[210)  (200[V[211)  (200|V|21 - 1)

(210|V[200)  (210[V[210)  (210[V]211)  (210|V|21-1)

(211]V[200)  (211|V[210)  (211[V]211)  (211|V|21-1)
(21 -1|V[200) (21 -1|V|210) (21-1|V|211) (21-1|V|21-1)

V= (6.41)

This looks like a nasty thing to work with but luckily it turns out most of the terms are zero.
Each of the 16 matrix elements is of the form:

Vimarm =(2,1,m|z[2,I",m') = ]ff uf, (1 cos 0)uy e r? sin dOddr (6.42)

where we recall that

uOO o< (1 — L) 6—7'/20,0
2@0
U1 < T COS e /200 (6.43)

uqy o< 1 sin fePe /20

w1_1 o< rsin e 1P /20

where a is the Bohr radius. Looking first at parity, it is clear that z = r cos(#) has odd parity.
And thus any term along the diagonal is the integral over an odd function and so is zero. Similar
parity arguments apply for Vi_; 11 terms. Secondly, f027r e"d¢ = 0, so any term with a single w1y
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or uj—1 contribution vanishes, e.g. Vio,1-1 = V11,00 = Vi-1,00 = 0. Thus we end up with only two
non-zero terms corresponding to Vpo o1. Thus we have left with:

0 o 0 0
~ o 0 0 O
V= 0 0 00
0 0 00

where (if you do the integrals) ao = —3e€agp. It is now easy to sedﬂ that the eigenvalues of V are
+3e€ag and 0. The corresponding eigenkets are 2_1/2(1, +1,0,0), (0,0,1,0) and (0,0,0,1) (with
the final two eigenstates still degenerate). We conclude that as soon as the slightest perturbation
is switched on, the system is in the state of lowest energy, i.e.,

1

ﬁ(yzoo) +]210)) (6.44)

[¥) =

with energy Ej = —3apef.

2The top left hand block just corresponds to diagonalizing o, and the lower block is just the all zero matrix.

70



	Perturbation Theory
	Non-degenerate Time-Independent Perturbation Theory
	Examples

	Degenerate Time-Independent Perturbation Theory
	Examples



